]> AND Private Git Repository - these_gilles.git/blob - DOCS/L'estimation du gradient d'une fonction de densité, avec des applications dans Motif Recognition_ Baidu bibliothèque_files/11b6a7de6f1aff00bed51eac(5)
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
initial commit
[these_gilles.git] / DOCS / L'estimation du gradient d'une fonction de densité, avec des applications dans Motif Recognition_ Baidu bibliothèque_files / 11b6a7de6f1aff00bed51eac(5)
1 @font-face {src: url(data:font/opentype;base64,AAEAAAAMAIAAAwBARkZUTWdp81QAABXgAAAAHE9TLzIRgjBdAAABSAAAAFZjbWFwHG9HcQAAAmgAAAHiZ2FzcP//AAMAABXYAAAACGdseWZDxlPbAAAEtAAADFxoZWFk/fKhMwAAAMwAAAA2aGhlYQepAwkAAAEEAAAAJGhtdHhoMglNAAABoAAAAMhsb2NhSKJFZgAABEwAAABmbWF4cAB3ADcAAAEoAAAAIG5hbWXOJ5vbAAAREAAAAw9wb3N0aA8A5gAAFCAAAAG2AAEAAAABDMxrcdArXw889QALA+gAAAAAzZYoWAAAAADNlihYAAb/JgOhA6wAAAAIAAIAAAAAAAAAAQAAA6z/JgBaA7AAAAAAA6EAAQAAAAAAAAAAAAAAAAAAADIAAQAAADIANAADAAAAAAACAAAAAQABAAAAQAAAAAAAAAABAioBkAAFAAACigK8AAAAjAKKArwAAAHgADEBAgAAAgAFAwAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAAAEAAIADCAyD/OABaA6wA2iAAAJMAAAAAAAABFgAAAAAAAAFNAAABFgAAARYAVwEWAFcCLAArAiwAIgIsACMCLAAmARYAbgKbABEC0gAwAtIAWQKbAFoC0gBTARYAZAIsAFAC0gBMAwoAJgKbAFsC0gBdApsAMAJjABUC0gBVApsAHgOwABYCmwAWApsADQIsACoCLAA2AfQAHwIsABoCLAAoARYAEgIsAEYA3gBCAN4ARANBAEYCLABGAiwAJAIsADYBTQBFAfQAIgEWAA4CLABBAtIABgH0ABQB9AAfApsAEQAAAAMAAAADAAAAHAABAAAAAADcAAMAAQAAABwABADAAAAALAAgAAQADAAgACwALgAwADIANQA6AEEARQBJAEwAUABZAGYAaQBwAHUAdwB6AML//f//AAAAIAAsAC4AMAAyADUAOQBBAEMASABMAE4AUgBhAGgAbAByAHcAeQDC//3////j/9j/1//W/9X/0//Q/8r/yf/H/8X/xP/D/7z/u/+5/7j/t/+2/28AAwABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEGAAABAAAAAAAAAAECAAAAAgAAAAAAAAAAAAAAAAAAAAEAAAMAAAAAAAAAAAAAAAQABQAGAAcAAAgAAAAJCgAAAAAAAAsADA0OAAAPEAAAEQASExQAFRYXGBkaGxwAAAAAAAAAHR4fICEiACMkAAAlJicoKQAqKywtAC4ALzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQAIABGAHgAqADgAPIBDgE8AVoBcgGKAZgBqAHAAegCCgJAAoIClAK0AsYC4gMAAxYDYgOMA7QD4AQSBDIEVARoBHYEqATIBO4FGAU0BW4FkAWwBcwF8AYIBi4AAAABAFf/bQDAAGgACgAANzMVFCM1PgE9ASNXaWkjGTxoeIMmASY0EgAAAQBXAAAAvwBoAAMAADcVIzW/aGhoaAAAAgAr/+kB+wLFAA0AFQAAATIXFhUUBiMiJjU0NzYWIBEQMzI2NQETaTpFd3FydkU79v7kjEpGAsVOXsivubuzw11OTv7f/tyQlwAAAAEAIgAAAf8CxQAeAAAlFSE+AT8BNjU0JiMiDgEHIzY3NjMyFxYVFA8BDgEHAfr+KAZSb1xgUDwoQSIEWAMjPIhjPkKWZEE4B1dXdX8/NDdVOUwlQERkNlw4PFyEUjYmQCwAAAABACP/6QIBAsUAHgAAARUhBzYzMhYVFAYjIiYnJiczFjMyNjU0JiMiBgcjEwHc/tkcO0hmf4hrPGYeGxBYH3JIU1RHKTofUTUCxVfGK4NpcI4tKCFPd1hMT1sdJQGCAAACACb/6QH9AsUAGQAkAAA3Mx4BMzI2NwYiJjU0NjMyFxYVFAcOASMiJhMiBhUUFjI2NTQmNVgLPi5MUQFCwHqDZXc8PEEfZTpRa8s9UEqAU1KiMziLgk9+Y2iHWFqouWQvNmICLVhDR1NUQUVbAAAAAgBuAAAA1gIMAAMABwAANxUjNRMVIzXWaGhoaGhoAaRoaAAAAgARAAACjQLZAAcACgAAJSEHIwEzASMLAgHa/udNYwEEeAEAaGVweNvbAtn9JwEpAUz+tAAAAAABADD/6QKlAuUAHAAAASMmJyYjIgYVFBYzMjY3NjczAiEiJyY1NDc2MzICll8PJjFfanuAbTtZFhYLYCH+9Y1SamZSle4B90sjLqKMiaExLSpH/t9Vbbm3b1sAAAIAWQAAApsC2QAHABAAADMRITIWEAYjJzMyNjU0JisBWQEZi56firysbHBwbKwC2cL+rMNSkIqLkAAAAAEAWgAAAmUC2QALAAATFSEVIREhFSEVIRW3Aa799QH5/mQBjQFM+lIC2VLpUgAAAAEAUwAAAoQC2QALAAABIREjETMRIREzESMCJ/6KXl0Bd11dAUz+tALZ/sUBO/0nAAEAZAAAAMIC2QADAAATESMRwl4C2f0nAtkAAAABAFAAAAIVAtkABQAAExEhFSERrQFo/jsC2f15UgLZAAEATAAAAoYC2QAJAAABESMBESMRMwERAoZp/odYZQF9Atn9JwJP/bEC2f2sAlQAAAIAJv/pAuYC5QAMABYAAAEyFhUUBgcGIyImEDYXIgYQFjI2NTQmAYWgwUM7W4eewsKddI6P6I+OAuXUsFqfMk3TAVbTUqX+8qWkhIqmAAAAAgBbAAACaQLZAAsAEwAAExEjESEyFhUUBwYjJzMyNjQmKwG4XQEtbHU/OlPlwkNLS0PCATX+ywLZb2dhOTRSRHhEAAACAF0AAAKnAtkAGAAiAAATESMRITIWFRQGBx4BFx4BFxUjJjU3NCYjJzMyNjU0JyYrAbpdAVBrczY9OycBAhAacRUBOj7w4UpFJiBJ4QE6/sYC2WVePlIeGkpaSTgSFzBHQUM/UjxBQiAcAAABADD/6QJtAuUAKwAAASMuASMiBhUUFh8BHgEVFAYHBiMiJyYnMwYXFjMyNz4BNTQvASY1NDYzMhYCVFgBXldKWTZCt0pRKyVJhKlMKgFYASczdVktFx2GtY+LeH6MAgNHTUQ3KjASMRRgQy9bHThoOV5BLz0fETcdUyMwJYVjc3cAAAABABUAAAJRAtkABwAAAREjESM1IRUBYl3wAjwCh/15AodSUgABAFX/6QKFAtkAEgAAATMRFAYjIiY1ETMRFBcWMzI2NQIoXZmAgpVdNTVQWGQC2f4AboKBbwIA/gBPKSZUSgAAAQAeAAAChQLZAAYAACEjATMbATMBiGT++mTWymMC2f2XAmkAAQAWAAADoQLZAAwAACEjCwEjAzMbATMbATMC6Gaoo2a7aImiZKaGaAJX/akC2f2wAlD9sAJQAAABABYAAAKJAtkACwAACQEjCwEjAQMzGwEzAYcBAnPHyHEBAvJxu7xvAXb+igEw/tABdgFj/uIBHgAAAAABAA0AAAKVAtkACAAAAREjEQEzGwEzAYNd/udz1tBvAR7+4gEeAbv+nQFjAAIAKv/pAhcCGwAmADMAACUVBiMiJicGIyImNTQ3PgE3PgE9ATQmIyIGByM2NzYzMhYVERQzMic1BgcOARUUFjMyNzYCFyMWKCkFVF5PXVwZOFcxJj04OjwFVAMhN3dhZC0JiSFlQzs2MUg0ITE/CSUoTVRHZiYKCwsGGhoWJigtMEglPUlG/swpdl4PDgotKSgsLx4AAAAAAgA2/+kCCwLZAA4AGQAAEzMRNjMyFhUUBiMiJxUjEyIGFBYzMjY1NCY2UzlpaHh8aGs7S+VCUFBCRFVTAtn+7FaUf4KdWkMBzW+4b29ZXnAAAAAAAQAf/+kB3QIbABkAAAEjLgEjIgYVFBYzMjczDgEjIiY1NDYzMhcWAddUCEA0RE1ORWsVVAhwXmt9f2pzOR0BXDc7b2Jdan5ga5V/gpxOKwACABr/6QHvAtkADwAbAAABESM1DgEjIiY1NDYzMhcRAyIGFRQWMzI2NTQmAe9KIk82anp7Zmw1k0RUVEVCUFAC2f0nRTErmYV9l1EBD/70cFtcb25bXm8AAgAo/+kCAQIbABQAHQAAJSEWFxYzMjczDgEjIiYQNjMyFhcWBSE2NTQmIyIGAgH+fgEbK1NmI1QQdlpugINtSnEZFf6AASYBVD0/UupIKERpVmCVAQKbSkA3LAIEQVlXAAAAAAEAEgAAAQIC3AAUAAABFSMRIxEjNTM1NDYzMhcVJiMiHQEBAldTRkZBOhcYEwo6AgxE/jgByERZOD8FRQE1UgABAEYAAAHmAtkAFAAAEzMRPgEzMhYVESMRNCcmIyIGFREjRlMlSzhMWVMiICpATlMC2f7rMCdNQv50AWs3GBhhUP7fAAIAQgAAAJYC2QADAAcAABMRIxE3FSM1llNTVAIM/fQCDM1paQAAAAABAEQAAACYAtkAAwAAExEjEZhUAtn9JwLZAAAAAQBGAAAC+gIbACEAABMzFT4BMzIXPgEzMhYVESMRNCYjIgYVESMRNCYjIgYVESNGTSJLNGEsJUg0SU9UMy4zSFQzLjNIVAIMSi8qUCwkS0f+dwFpMjdQOf63AWkyN1A5/rcAAAEARgAAAecCGwATAAATMxU+ATMyFhURIxE0JiMiBhURI0ZNI1E6TFpTOjJATlQCDFg3ME5B/nQBay84YVD+3wACACT/6QH+AhsACgAVAAABMhYVFAYjIiYQNhciBhQWMzI2NTQmARBxfX9ucH1+b0ZQUEZFUU8CG5WIgZSVAQiVTW2+bW1cYW4AAAAAAgA2/yYCCwIbAA4AGQAAFxEzFTYzMhYVFAYjIicREyIGFBYzMjY1NCY2TTtsaHl7ZWFAkkJQUEJEVFPaAuZPXpqEfZdO/u8Cp2+4b29ZXnAAAAAAAQBFAAABQQIbAA4AABMzFT4BMzIXFQYHBhURI0VNJEMoCxVLIjtUAgxfOzMDVQEZK27+8AAAAAABACL/6QHLAhsAJQAAASMmIyIGFRQWHwEeARUUBiMiJzMWFxYzMjY1NCYvAS4BNTQ2MhYBtlgDZjM8LjNQTkZ1Y8sGWAYSIUc3QyYrTl1JbrZiAXpUKyQcIwwTE0U6TFqzLxQjLSUdIgoTFkM+SVdUAAAAAAEADv/pAP4CnAAVAAATFSMRFBYzMjcVBiMiJjURIzUzNTMV/lYTGxkPJx0xNEdHUwIMRP6ZHBMERgcrKAGMRJCQAAAAAQBB/+kB4gIMABMAACEjNQ4BIyImNREzERQWMzI2NREzAeJLJVA6TFtTOjJBTlNJNCxOQQGU/o0vOGFQASkAAAEABgAAAsQCDAAMAAAhIwsBIwMzGwEzGwEzAipfamVemFxrZGZnaF4Bm/5lAgz+aAGY/mgBmAAAAQAU/yYB3gIMABIAAAEzAwYHBiMiJzUWMzI2PwEDMxMBhFrpFiMiLB8ZGxEaHwogsVmGAgz9hjkaGQ1LBhccUwIO/mgAAAAAAQAfAAAByQIMAAkAAAEVASEVITUBITUBu/7JAUX+VgE5/twCDEr+h0lLAXhJAAAAAwARAAACjQOsAAcACgARAAAlIQcjATMBIwsCEzMXIycHIwHa/udNYwEEeAEAaGVweEhfYD9RT0Db2wLZ/ScBKQFM/rQCg5ZgYAAAAAAADgCuAAEAAAAAAAAAQACCAAEAAAAAAAEAFQDvAAEAAAAAAAIABwEVAAEAAAAAAAMAMQGBAAEAAAAAAAQAFQHfAAEAAAAAAAUADQIRAAEAAAAAAAYAFQJLAAMAAQQJAAAAgAAAAAMAAQQJAAEAKgDDAAMAAQQJAAIADgEFAAMAAQQJAAMAYgEdAAMAAQQJAAQAKgGzAAMAAQQJAAUAGgH1AAMAAQQJAAYAKgIfAEMAbwBwAHkAcgBpAGcAaAB0ACAAKABVAFIAVwApACsAKwAsAEMAbwBwAHkAcgBpAGcAaAB0ACAAMQA5ADkAOQAgAGIAeQAgACgAVQBSAFcAKQArACsAIABEAGUAcwBpAGcAbgAgACYAIABEAGUAdgBlAGwAbwBwAG0AZQBuAHQAAENvcHlyaWdodCAoVVJXKSsrLENvcHlyaWdodCAxOTk5IGJ5IChVUlcpKysgRGVzaWduICYgRGV2ZWxvcG1lbnQAAE4AaQBtAGIAdQBzACAAUwBhAG4AcwAgAEwAIABSAGUAZwB1AGwAYQByAABOaW1idXMgU2FucyBMIFJlZ3VsYXIAAFIAZQBnAHUAbABhAHIAAFJlZ3VsYXIAAEYAbwBuAHQARgBvAHIAZwBlACAAMgAuADAAIAA6ACAATgBpAG0AYgB1AHMAIABTAGEAbgBzACAATAAgAFIAZQBnAHUAbABhAHIAIAA6ACAAMQA5AC0ANAAtADIAMAAxADMAAEZvbnRGb3JnZSAyLjAgOiBOaW1idXMgU2FucyBMIFJlZ3VsYXIgOiAxOS00LTIwMTMAAE4AaQBtAGIAdQBzACAAUwBhAG4AcwAgAEwAIABSAGUAZwB1AGwAYQByAABOaW1idXMgU2FucyBMIFJlZ3VsYXIAAFYAZQByAHMAaQBvAG4AIAAxAC4AMAA1ACAAAFZlcnNpb24gMS4wNSAAAE4AaQBtAGIAdQBzACAAUwBhAG4AcwAgAEwAIABSAGUAZwB1AGwAYQByAABOaW1idXMgU2FucyBMIFJlZ3VsYXIAAAACAAAAAAAA/1AAMgAAAAAAAAAAAAAAAAAAAAAAAAAAADIAAAABAAIBAgEDAQQBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMBFAEVARYBFwEYARkBGgEbARwBHQEeAR8BIAEhASIBIwEkASUBJgEnASgBKQEqASsBLAEtAS4BLwDHCXNwYWNlXzI5Ngljb21tYV8yMjYKcGVyaW9kXzIyMgh6ZXJvXzIxMgd0d29fMjA0CGZpdmVfMjA3CG5pbmVfMjExCWNvbG9uXzIyMwVBXzEzMwVDXzEzNQVEXzEzNgVFXzEzNwVIXzE0MAVJXzE0MQVMXzE0NAVOXzE0NgVPXzE0NwVQXzE0OAVSXzE1MAVTXzE1MQVUXzE1MgVVXzE1MwVWXzE1NAVXXzE1NQVYXzE1NgVZXzE1NwVhXzE2NgViXzE2NwVjXzE2OAVkXzE2OQVlXzE3MAVmXzE3MQVoXzE3MwVpXzE3NAVsXzE3NwVtXzE3OAVuXzE3OQVvXzE4MAVwXzE4MQVyXzE4MwVzXzE4NAV0XzE4NQV1XzE4NgV3XzE4OAV5XzE5MAV6XzE5MQAAAAAAAf//AAIAAAABAAAAAMw9os8AAAAAzZYoLAAAAADNlihY)format('truetype');font-family: '11b6a7de6f1aff00bed51eac0010008'; font-weight: normal; font-style: normal;}